

19th X-ray & CT Forum

September 10th-12th 2024 Hamburg (Germany)

ADVANCES IN XCT: from the auxiliary role of AI to the study of in situ processes

J.García Molleja, A. Vicente del Egido, A. Pascual Tevar, M.D. Martín Alonso, F. Sket

December 2019 – December 2023

Comunidad de Madrid

Ubicación de Getafe en España.

Ubicación de Getafe en Comunidad de Madrid. Copyright ® 2007 – 2030 IMDEA Materials Institute. All rights reserved.

Where are we?

Baker Hughes Confidential wikipedia.org

http://materials.imdea.org

- **Public research centre since 2007.**
- **16 research groups.**
- **120 JCR published papers per year.**
- **> 150 people.**
- **> 70 R&D private contracts.**

Copyright ® 2007 – 2030 IMDEA Materials Institute. All rights reserved.

In-situ processing and mechanical IMdea EXCELLENCE 核林 MARÍA **characterization of materials group DE MAEZTU** materials federico.sket@imdea.org javier.garcia@imdea.org

Baker jorges sabrejas @imdea.org

- **Coordinated by the "In-situ processing and mechanical characterization of materials" group.**
	- **Advanced characterization of materials, including microstructural, chemical, and crystallographic information on various scales of magnitude using different techniques.**
- **Key laboratory in a research line focused on multi-scale characterization of materials and processes.**
- **We are going several times per year to different European synchrotrons (ESRF, SLS, DESY, BESSY, ALBA).**

Copyright ® 2007 – 2030 IMDEA Materials Institute. All rights reserved.

malvernpanalytical.com

Baker Hughe

suplitec-ndt.com

- **Max voltage: 160 kV.**
- **Targets: Mo and W.**
- **Voxel size: from 30 to 1 µm/px.**
- **Detector area: 2300×2300 (pixel side 50 µm).**
- **Three virtual detectors.**
- **Up to 9 radiographs per second.**

- **Max voltage: 160 kV.**
- **Target: W.**
- **Voxel size: from 57 to 0.3 µm/px.**
- **Detector area: 3072×1944 (FPX, 75 µm) and 2048×2048 (CCD, 14 µm).**
- **Objectives: 0.4X, 4X, 20X, 40X.**
- **DCT option is available.**

Combining XCT with ultrasonic tests (UT) for CFRP composites

Baker Hughes Confidential

More details? alberto.vicente@imdea.org

- **UT is a non-destructive technique.**
- **High frequency sound is reflected by defects.**
- **Applied for quality assessment.**

- **Our goal is to combine the scan speed of UT with the quality of XCT.**
- **Deep learning approach is the most convenient.**

- **UT output is a 3D volume of information (X, Y, time window).**
- **Normally, ultrasound volume is converted into C-scans.**
- **We can think about that an ultrasound volume is a stack of A-scans.**
- **This information can be treated using a Convolutional Neural Network.**

Blurred XCT

Projection

(our 2D Ground

truth)

- **Key points to do in the future:**
	- **Measurement in UT of the volume porosity.**
	- **Measurement in UT of the area porosity along the sample thickness.**

- **For a good dataset, dozens of samples must be measured using both techniques.**
- **The regression-CNN we are using has 6000 points, and the feature extraction is performed in UT and XCT volumes.**
- **The trained model will learn to improve the measurement performed in UT giving a "XCT-quality" scan.**

Comparison

Copyright ® 2007 – 2030 IMDEA Materials Institute. All rights reserved.

Damage assessment in CFRP composites after tensile and fatigue tests

Baker Hughes Confidential

More details? alba.pascual@imdea.org

- **Aircraft weight is reduced using CFRP in several parts.**
- **Less weight means less fuel: cost savings and less pollution.**
- **However, it is necessary to know the behaviour of CFRP under aggressive conditions.**
- **Depending on the stacking sequence, cracks and delamination have different development.**

www.carbonfiber.gr.jp

- **Three segmentation paths can be followed:**
	- **BINARIZATION**
		- **Time saving**
		- **Easy to implement**
		- **Less human error**
		- **Implemented in ImageJ**

Baker Hughes Confidential Good contrast, good SNR, easy to identify borders and defects

- **Three segmentation paths can be followed:**
	- **DEEP LEARNING**
		- **Takes time to train the model**
		- **Easy to implement once the model is trained**
		- **Implemented in Avizo**

Good quality, easy to manually label the defects

- **Three segmentation paths can be followed:**
	- **MANUAL**
		- **Time consuming**
		- **Non generalizable for other samples**
		- **High human error**
		- **Implemented in ImageJ and Avizo**

High phase contrast enhancement

- **Avizo implements several modules focused on deep learning methods.**
- **Two phases:**
	- **Training**
	- **Prediction**

- **TRAINING:**
- **Segmented ground truth is necessary. Labelling will help to classify different defects (AI Assisted Segmentation, implemented in Avizo, too).**
- **The module needs as inputs the segmented ground truth and the grey-level original.**
- **Avizo uses a shallow fully convolutional neural network for image semantic segmentation.**
- **Possibility to select the number of epochs and elastic deformation.**
- **The training can be done at specific regions, but the prediction is computed on the whole volume.**

- **TRAINING:**
- **Extract Subvolume to extract regions from the ground truth grey-level volume and its labelled counterpart.**
- **Cubic subvolumes with the feature we need to identify are the best choice.**
- **DL Training – Segmentation 2D module trains the set with variants of U-Net model (VGG, ResNet…).**

- **TRAINING:**
- **Train Learning Curve and Validation Learning Curve will verify the goodness of the model.**
- **Loss function must be at the minimum value and accuracy near 1.**
- **Try to avoid underfitting and overfitting!**
- **Check the proportion between train and validation datasheets.**

Baker Hughes Confidential

- **PREDICTION:**
- **Load the volume to segment. It has to be similar to the ground truth volume.**
- **The trained classifier has the architecture and weights. These parameters can be adjusted, too.**
- **The prediction can be done for the whole volume or applied as overlapped regions.**

Copyright ® 2007 – 2030 IMDEA Materials Institute. All rights reserved.

Copyright ® 2007

Copyright ® 2007 – 2030 IMDEA Materials Institute. All rights reserved.

F387_21_1 (90 kN)

Copyright ® 2007 – 2030 IMDEA Materials Institute. All rights reserved.

 ρ_{eq} = Crack density per ply
L = Sum of the length of each crack in the ply $=\frac{L \cdot t}{A}$ $\rho_{eq} =$ $t =$ Thickness of the ply $A =$ Area of the analyzed ply

 -45 45

0

Crack density per ply in tensile samples

F191 21 4

 ρ_{eq} = Crack density per ply
 $L =$ Sum of the length of each crack in the ply
 $t =$ Thickness of the ply
 $A =$ Area of the analyzed ply $\rho_{eq} = \frac{L \cdot t}{A}$

Crack density per ply in fatigue sample

Area $A_{\text{delaminated}}/A_{\text{analyzed}} = \frac{Area}{Nominal Area}$

 $\mathcal{L}_{\mathbf{y}}$

 \mathbf{x}

Delaminated area in all samples

Baker Hughes Confidential Confidential Confidential Confidential Confidential Confidential Confidential Confidential Conf

F387_21_4

Understanding degradation behavior of Mg scaffolds manufactured via LPBF

Baker Hughes Confidential

More details? mariadolores.martin@imdea.org

- **Materials in health must fulfil three requirements:**
	- **Biocompatibility**
	- **Biodegradation**
	- **Similar mechanical properties**

- **Magnesium alloys can verify these requirements.**
	- **Avoids stress shielding and body rejection.**
	- **Rapid degradation rate.**
- **Additive Manufacturing (AM) can build complex geometries that can be fitted to precise body parts. Selective Laser Melting (SLM) is a good choice.**
	- **High precision and flexibility fabrication**
	- **Enhancement of surface properties after Plasma Electrolytic oxidation (PEO) treatment.**

- **WE43-PEO BCC, FCC, and gyroid scaffolds were built.**
- **They were immersed into SBF for 0, 7, 14, and 21 days.**
- **Interrupted in-situ compression tests were conducted at room temperature at the microtomography ID19 beamline of the European Synchrotron Radiation Facility (ESRF) in Grenoble (France).**
	- **Voxel size: 6.5 µm.**
	- **Monochromatic energy: 80 keV.**
- **In situ test machine developed at IMDEA Materials.**

The European Synchrotrog aker Hughes Confidential

- **The maximum strength of the scaffolds decreases substantially when immersing in SBF.**
- **Only BCC scaffold will be shown in this presentation.**
- **Digital Image Correlation (DIC) and Digital Volume Correlation (DVC) are implemented in all the samples to evaluate the damage evolution.**

Compressive direction

- **BCC structure was found to be liable for development of localized deformations.**
- **Global strain: ε = 11 %.**

(a) BCC scaffold ε =11%

- **AM defects, like heterogeneous strut size, serves as stress concentrators for crack initiation.**
- **Degraded parts after SBF immersion caused failure location.**

(a) BCC scaffold $\epsilon = 9\%$

(b) BCC scaffold $\epsilon = 7\%$

Failure location is transferred to the more damaged parts, not the diagonal struts.

- **DVC is an Avizo module:**
	- **Successive steps are not very distant from each other.**
	- **Registration is mandatory.**
	- **Resampling can reduce the computing load.**
	- **Autocorrelation.**
	- **Uncertainty.**
	- **Meshing.**
	- **Global DVC.**

Baker Hughes Con

- **Autocorrelation:**
	- **DVC relies on naturally occurring texture to perform registration between two successive 3D volumes.**
	- **Correlation measurements reveal the spatial arrangement of features within the material's microstructure.**
	- **They guide the selection of an optimal mesh cell size.**

100.0

Baker Hughes Confidential

- **Uncertainty:**
	- **Once a range of mesh sizes was selected, the uncertainty assessment for different mesh sizes was carried out to find out the strain error for each mesh size.**
	- **Resolution and precision were obtained, with strain errors no greater than 0.08 %.**

 ϵ_{error} =0.002-0.003%

- **Grid generation:**
	- **Performed automatically by the software.**
	- **It is dependent on the ROI to study.**

- **Global DVC output:**
	- **Displacement field composed of vectors from each point from their initial positions to their current positions.**
	- **Strain map with a representation of deformations when the material elements were stretched, compressed or sheared.**

Displacements WPB_0005

 ϵ ₃ Strain Map WPB_0005

- **Maximum, ε¹ , principal stress → Maximum stretching deformation.**
- **Minimum, ε³ , principal stress → Maximum compressive deformation.**
- **The shear band is detected with the maximum compressive deformation.**
- **Stretching deformation zones acted as catalysts for the shear banding.**

Strain Map WPB_0005

Ɛ³ Ɛ Strain Map WPB_0005 ¹

 $(E=6.0\%)$

- **For a particular slice, the evolution of the strain field with the compression load can be seen.**
- **Highly deformed regions were located at the intersection of nodes and struts, typical zones for crack initiation.**

Ɛ3 Strain Maps

Copyright \circledcirc 2007 – 2030 IMDEA Materials Institute. All rights reserved.

 -0.045

Baker Hughes Confidential

 $(E=5.0\%)$

- **With the residual from the correlation maps, it was possible to segment and extract the cracks.**
- **They were located at the diagonal intersections.**

- **UT is a fast technique, and its precision and detectability can be improved by artificial intelligence.**
- **XCT scans will feed the model.**
- **A massive set of scans is necessary, so the model will identify several types of defects (cracks, bubbles, resin pockets, delamination…).**

- **Segmentation process plays a key role in a damage assessment workflow.**
- **Depending on the scan output and reconstruction artefacts several approaches can be applied.**
- **Training the model is the most time-consuming step.**
- **With a well-trained classifier the automated detection will be fast.**

- **In-situ scans are a good option to understand the mechanical properties of materials.**
- **The analysis of XCT volumes can be complemented with correlation techniques.**
- **Image and volume correlation allow to identify regions with high deformation, where crack initiation is more probable.**

Thank you very much! Questions?