

Zentrum für mikrotechnische Produktion

Investigations of sintered silver interconnects with multi-energy X-ray imaging methods

Oliver Albrecht, Mengwen Zhao, Martin Oppermann, Thomas Zerna

19th Global X-Ray & CT-Forum Hamburg 11.09.2024

Outline

- Motivation & Objectives
- Multi-Energy Approach
- Solution Approach & Procedure
- Example
- Summary & Outlook

Investigations of sintered silver interconnects with multi-energy X-ray imaging methods TU Dresden – ZmP / Oliver Albrecht 19th Global X-Ray & CT Forum / 11.09.2024

Motivation – Power Electronics

- Conversion of electrical energy into:
 - Light, Motion, Heat
- Main drivers are
 - Electric Vehicles
 - Renewable Energies
- General approaches to increasing power density:
 - Improvement of cooling system (Dissipation of more power loss)
 - Improvement of power devices (Reducing the power loss)
 - Increase of operating temperatures (Increase in temperature difference)

[1] Kraus Hardware

[2] Klemm, Alexander (2024), presentation as part of the 2023/24 Oberseminar at the IAVT

Investigations of sintered silver interconnects with multi-energy X-ray imaging methods TU Dresden – ZmP / Oliver Albrecht 19th Global X-Ray & CT Forum / 11.09.2024

Motivation – Power Electronics

Present Operating temperature up to 150°C Wirebonds SiC / GaN Si Solder Sinter DCB / AMB DCB / AMB Solder

Baseplate

Near Future Operating temperature more than 175°C

[3] F. Seifert and U. Hauf, "Optimized paste for large area pressure sintering with silver sinter paste," PCIM 2023

Investigations of sintered silver interconnects with multi-energy X-ray imaging methods TU Dresden – ZmP / Oliver Albrecht 19th Global X-Ray & CT Forum / 11.09.2024

Motivation – NDT Needs for Power Electronics

- No NDT methods suitable for series production of (silver-) sintered interconnects available
- X-ray inspection → Grainy structure of sintered interconnects leads to low-contrast signals (compared to solder)
- Precise determination of porosity with SEM after cross-section preparation (destructive)

X-ray image Soldering

X-ray image Sintering

Investigations of sintered silver interconnects with multi-energy X-ray imaging methods TU Dresden – ZmP / Oliver Albrecht 19th Global X-Ray & CT Forum / 11.09.2024

Motivation – NDT Needs for Power Electronics

	Imaging methods			Testing / Comparative methods			
	X-RAY	SAM	LIT	ТТА	OLS	КТ	
Automation	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	
In-Line capable	\checkmark	\checkmark	\checkmark	×		\checkmark	
Solder joint	\checkmark	\checkmark	✓ / <mark>○</mark>	\checkmark	\checkmark	\checkmark	
Sintered interconnects	× / 🔾	 ✓ / ○ 	 ✓ / ○ 	\checkmark	0	\checkmark	
Restrictions	Superpositon of strutures	Needs contact medium	Surface treatment	Needs Individual contacts	Cycle times	Contact to the surface	

Investigations of sintered silver interconnects with multi-energy X-ray imaging methods TU Dresden – ZmP / Oliver Albrecht 19th Global X-Ray & CT Forum / 11.09.2024

Objectives

Is it possible to determine the porosity of silver sintered interconnects non-destructively and with high resolution?

- Necessary are:
 - Thickness of silver sintered layer
 - Thickness of pure silver
 - → Ratio \approx porosity
- <u>The challenge!</u>
 - All variables cannot be measured directly!
 - Which influences affect the result?
 - Background
 - Thickness of the die
 - Acquisition parameters
- Idea → Multi-Energy Imaging

Porosity $\approx 27\%$

Investigations of sintered silver interconnects with multi-energy X-ray imaging methods TU Dresden – ZmP / Oliver Albrecht 19th Global X-Ray & CT Forum / 11.09.2024

Multi-Energy Imaging

- Conventional radiography generally uses the attenuation behaviour for a discrete energy level
- The dual-energy method is a common extension
 - Applications in medicine and safety technology
 - Rough separation of materials in dependency of ordinal number
- Available Methods
 - Single-Shot / Sandwich-Detector

Dual-Shot / Flat-Detecor

Investigations of sintered silver interconnects with multi-energy X-ray imaging methods TU Dresden – ZmP / Oliver Albrecht 19th Global X-Ray & CT Forum / 11.09.2024

Multi-Energy Imaging

Basically means...

- Multi-Shot methods with Flatpanel-Detector
- Modification of <u>accelerating voltage</u> or <u>beam current</u>
- single or composite materials
- Evaluation of discrete pixels or defined area

Investigations of sintered silver interconnects with multi-energy X-ray imaging methods TU Dresden – ZmP / Oliver Albrecht 19th Global X-Ray & CT Forum / 11.09.2024

Multi-Energy Imaging

- To enhance material or thickness/density contrast, new images can be calculated on the basis of several X-ray images at different photon energies...
- usable grey values of the detector can theoretically be described as...

 $GW(E_{max},t) = \int_0^{E_{max}} D(E)I_0(E) \exp(-\int_0^t \mu(E,x)(x)dx) \, dE \quad [4]$

- Approximate evaluation requires simplified boundary conditions, such as constant detector behaviour and a spectral distribution according to Kramer's rule.
- Equation can be simplified based on empirical experience with polynomial function to fit image data
 - Variable acceleration voltage at constant beam current $GW(U) = aU^3 + bU^2 + cU + d$
 - Variable beam current at constant acceleration voltage GW(U) = cU + d

[4] M. Heckert, S. Enghardt, and J. Bauch, "Novel multi-energy X-ray imaging methods: Experimental results of new image processing techniques to improve material separation in computed tomography and direct radiography," *PLoS One*, vol. 15, no. 5, pp. 1–15, 2020, doi: 10.1371/journal.pone.0232403.

Investigations of sintered silver interconnects with multi-energy X-ray imaging methods TU Dresden – ZmP / Oliver Albrecht 19th Global X-Ray & CT Forum / 11.09.2024

Solution Approach

Investigations of sintered silver interconnects with multi-energy X-ray imaging methods TU Dresden – ZmP / Oliver Albrecht 19th Global X-Ray & CT Forum / 11.09.2024

Equipment

X-ray microscope nanome | x

- Acceleration voltage 160: 10 160kV / 15W
- Beam current: 5 880µA
- Digital Detector DXRT250RT
 - Active pixel:
- 1.000 x 1.000 Pixel

10.000:1

- Detector area: 200 x 200 mm²
- Pixel distance: 200 x 200 μm²
- Grey scale resolution: 14 bit
- Dynamic:

Investigations of sintered silver interconnects with multi-energy X-ray imaging methods TU Dresden – ZmP / Oliver Albrecht 19th Global X-Ray & CT Forum / 11.09.2024

Investigated Energy Levels

- Investigation of
 - variable acceleration voltage
 - variable beam current
- Investigation of different approaches to "normalise" empirical grey values
- Supporting investigations have shown that the use of variable acceleration voltage is more sensitive to "measure" small differences

Variable Accele	eration Voltage		Variable Beam Current			
kV	μA		kV	μA		
				50		
60				60		
70				70		
80				80		
90				90		
100	100		100	100		
110	100			110		
120				120		
130				130		
140				140		
150				150		

Basic Investigations – Acquisition Parameter

- Captured grey values are dependent
 - background,
 - exposure time
 - aging of filament,
 - ...
- Normalisation is necessary to compare results
- Recommended measures for preparation
 - Warm-up
 - Full-Centering of focus mode
 - Maintain exposure time
 - Saved as...Tiff-Images (16bit)

Basic Investigations – Different thicknesses

Investigations of sintered silver interconnects with multi-energy X-ray imaging methods TU Dresden – ZmP / Oliver Albrecht 19th Global X-Ray & CT Forum / 11.09.2024

Basic Investigations – Different materials

Investigations of sintered silver interconnects with multi-energy X-ray imaging methods TU Dresden – ZmP / Oliver Albrecht 19th Global X-Ray & CT Forum / 11.09.2024

Basic Investigations - Influences of Die & Substrat

- Examination of two Die thickness (610µm & 650µm)
 - significant differences were found between the thicknesses, but none within a batch of the same thickness
- Individual properties of single substrats
- Probably deviations in the average copper layer thickness
- Decreasing layer thickness towards the edges
- large defects visible at the interfaces
- \rightarrow Place single Si-Die as reference area on each substrate

Illustration of the grey value distribution for one example

Basic Investigations – Reference measurements

- Manufacturing of silver foils with a defined layer thickness
- Combination of "Substrate & Die" as background
- Investigation of different influences
- Multi-Energy Imaging
- Calculations of the intensity curves

Investigations of sintered silver interconnects with multi-energy X-ray imaging methods TU Dresden – ZmP / Oliver Albrecht 19th Global X-Ray & CT Forum / 11.09.2024

Basic Investigations – Transfer Function

- Calculation of the coefficients of the intensity curves
- Analytical derivation of a transfer function

Investigations of sintered silver interconnects with multi-energy X-ray imaging methods TU Dresden – ZmP / Oliver Albrecht 19th Global X-Ray & CT Forum / 11.09.2024

Design and Manufacturing of Test Specimen

DCB-Substrat:Area:25 x 25 mm²Layer structure:Cu 300µm / Al₂O₃ 380µm / Cu 300µmFinish:AgDie:

Area:5 x 5 mm²Thickness:610 μmMetallisation:Ag

Process Variable	pressureles						With pressure (2,4 MPa)					
# Dies / Substrat	4					1						
Time [min]	30					5						
Printed sinter layer [µm]	50 100			20	00	50		100		200		
Temperature [°C]	250	300	250	300	250	300	250	300	250	300	250	300

Investigations of sintered silver interconnects with multi-energy X-ray imaging methods TU Dresden – ZmP / Oliver Albrecht 19th Global X-Ray & CT Forum / 11.09.2024

Non Destructive Evaluation - Set Resolution

- Full image of 2x2 panel
- Verification of image scale
- Set resolution to 1 Pixel = 50 μm
- Each individual sintered interconnect will represented by a matrix of 100 x 100 pixel

Investigations of sintered silver interconnects with multi-energy X-ray imaging methods TU Dresden – ZmP / Oliver Albrecht 19th Global X-Ray & CT Forum / 11.09.2024

Measurement - Topography

- 3D Scanning Profilometrie with chromatic sensor (resolution out-of-plane: ≈ 25 nm)
- Automated measuring sequence for a substrate (lateral resolution 50 μ m \rightarrow 100 x 100 pixel)
- Alignment / surrounding substrate surface is levelling plane
- Individual analysis (tilt, warpage, etc..)
- Pixel precise determination of the stand-off / sinter layer thickness
- Export for further calculations (e.g. as ASCII surface)

Investigations of sintered silver interconnects with multi-energy X-ray imaging methods TU Dresden – ZmP / Oliver Albrecht 19th Global X-Ray & CT Forum / 11.09.2024

Measurement - Multi-Energy Imaging

		Low → High					
kV/μA	1	Ν					
	Acquis	ition of grey	values				
Reference	MW_Ref ₁	MW_Ref ₂		MW_Ref _N			
Pixel x,y	GW(x,y) ₁	GW(x,y) ₂		GW(x,y) _N			
Get intensity curves – approach 1							
$y = \frac{GW(x, y)_n}{MW_Ref_N}$							
Reference	γ_{Ref_1}	γ_{Ref_2}		y_Ref _N			
Pixel	y_(x,y) ₁	y_(x,y) ₂		у_(х,у) _N			
Polynomial regression for reference and each pixel							
$y = ax^3 + bx^2 + cx + d$							
Reference	a _{Ref}	b _{Ref}	C _{Ref}	d _{Ref}			
Pixel	а	h	C	d			

Get values for transfer function

Investigations of sintered silver interconnects with multi-energy X-ray imaging methods TU Dresden – ZmP / Oliver Albrecht 19th Global X-Ray & CT Forum / 11.09.2024

Example - Results

Investigations of sintered silver interconnects with multi-energy X-ray imaging methods TU Dresden – ZmP / Oliver Albrecht 19th Global X-Ray & CT Forum / 11.09.2024

Example - Validation

Investigations of sintered silver interconnects with multi-energy X-ray imaging methods TU Dresden – ZmP / Oliver Albrecht 19th Global X-Ray & CT Forum / 11.09.2024

Example - Comparison

	1	2	3
Height Optical [µm]	88	115	135
Height Topography [µm]	92	118	144
Porosity SEM [%]	9	26	40
Porosity X-ray [%]	10	35	59

Investigations of sintered silver interconnects with multi-energy X-ray imaging methods TU Dresden – ZmP / Oliver Albrecht 19th Global X-Ray & CT Forum / 11.09.2024

Summary & Outlook

- Multi-energy approach for polychromatic X-ray tubes was presented
- Enables separation of elements/material composites and measurement of layer thicknesses
- Can be applied to soldered joints and (silver) sintered interconnects if
 - Structure and topography is known
 - Substrate and Sie-Die are available separately
 - A calibration function is available
- Enables the combination of profilometric and radiographic measurements
- Spatially resolved determination of porosity for the whole area
- High correlation with porosity analysis using SEM
- The measurement process can be automated in principle
- Application possible in the context of process introduction or quality assurance

Thank you for your attention!

Investigations of sintered silver interconnects with multi-energy X-ray imaging methods TU Dresden – ZmP / Oliver Albrecht 19th Global X-Ray & CT Forum / 11.09.2024

