X 線増強スクリーンにはどのような素材が使われているか?
What types of material are used for radiographic intensifying screens?
The radiographic image is formed by only approximately 1 % of the amount of radiation energy exposed at the film. The rest passes through the film and is consequently not used. To utilise more of the available radiation energy, the film is sandwiched between two intensifying screens. Different types of material are being used for this purpose.
Under the impact of X-rays and gamma-rays, lead screens emit electrons to which the film is sensitive. In industrial radiography this effect is made use of: the film is placed between two layers of lead to achieve the intensifying effect and intensity improvement of approximately factor 4 can be realised. This method of intensification is used within the energy range of 80 keV to 420 keV, and applies equally to X-ray or gamma-radiation, such as produced by Iridium192.
Intensifying screens are made up of two homogeneous sheets of lead foil (stuck on to a thin base such as a sheet of paper or cardboard) between which the film is placed: the so called front and back screens.
The thickness of the front screen (source side) must match the hardness of the radiation being used, so that it will pass the primary radiation while stopping as much as possible of the secondary radiation (which has a longer wavelength and is consequently less penetrating).
The lead foil of the front screen is usually 0.02 to 0.15 mm thick. The front screen acts not only as an intensifier of the primary radiation, but also as an absorbing filter of the softer scatter, which enters in part at an oblique angle, see figure 2-6. The thickness of the back screen is not critical and is usually approx. 0.25 mm.
The surface of lead screens is polished to allow as close a contact as possible with the surface of the film. Flaws such as scratches or cracks on the surface of the metal will be visible in the radiograph and must, therefore, be avoided. There are also X-ray film cassettes on the market with built-in lead-screens and vacuum packed to ensure perfect contact between emulsion and lead foil surface.
Figure 4a-6 and figure 4b-6 clearly show the positive effect of the use of lead screens.
Summarizing, the effects of the use of lead screens are :
- improvement in contrast and image detail as a result of reduced scatter
- decrease in exposure time
A total processing cycle of a few minutes is possible with the use of an automatic film pro[1]cessor which makes it a very attractive system to deploy offshore (on lay barges) where weld examination has to be done at a very fast rate and few concessions are made towards image quality. Fig. 5-6 shows that a time saving at 10(3.7-2.8) or 100.9 works out at approxi[1]mately a factor 8. The actual time saving is often closer to factor 10.
These RCF screens are also used for “on-stream” examination, whereby long exposure times and mostly hard (gamma) radiation are applied because of the pene[1]trating power required. However, the relatively long exposure time (causing reciprocity) and hard radiation (Cobalt60) together considerably reduce the light emission effect, as tables 1-6 and 2-6 show.
On balance, the relative time saving is much smaller; usually no more than a factor 2 for an F6-film (at Ir192 and Co60) instead of 10 in the D7 lead screen technique. See the bold figures (2.5 and 1.7) in table 2-6.
Figure 6-6 gives an overview of graphs from which the relative exposure times can be dedu[1]ced when using different films and screens at 200 kV, (for film-density 2). The graph shows that an F8-film with RCF screen (point C) is approximately 8 times faster than a D8-film with lead (point B) and approximately 15 times faster than a D7-film with lead (point A). Since on-stream examination as well as examination of concrete, and also flash radiogra[1]phy allow concessions to image quality, a special fluorometallic screen (NDT1200) has been developed with extremely high light emission. In combination with an F8-film it may result in a reduction in exposure time at a factor 100 at 200 kV, against a D7-film with lead (point D as opposed to point A in figure 6-6), or even a factor 140 to 165, depending on source selection, see table 2-6. The intensification factor of the NDT1200 screens increases significantly at lower temperatures.
Table 2-6 shows the effect of radiation hardness on relative exposure times for the various film/screen combinations compared with D7 film with lead screen. Noticeably, for the NDT1200 screen and F-8 film the factor increases with the increase in energy, but for the F6 film the factor decreases at energy levels exceeding 300 keV.es at energy levels exceeding 300 keV.
It is clear from the above tables and graphs that there are many ways to reduce the expo[1]sure time or radiation dose needed. The required image quality is decisive (a higher expo[1]sure rate automatically means reduced image quality), and next the economic factors, for example the cost of the screens against time saved need to be weighed.
High-Resolution Computed Tomography (CT)
高エネルギー放射線の場合、鉛は増感紙に最適な材料ではありません。 Cobalt60 ガンマ線では、銅または鋼が鉛増感紙よりも優れた品質の X 線写真を生成することが示されています。 エネルギー範囲が 5-8 MeV (linac) のメガ電圧 X 線では、厚い銅増感紙がどんな厚さの鉛増感紙よりも優れた X 線写真を生成します。
蛍光という用語 (燐光とよく間違えられる) は、電磁放射線の影響下で瞬時に光を発する物質の特性を示すために使用されます。 放射線が停止した瞬間、発光効果も停止します。 この現象は、フィルムベースの X 線撮影でうまく活用されています。 特定の物質はイオン化放射線にさらされると大量の光を発し、直接のイオン化放射線よりも感光性フィルムに対して大きな影響力を持ちます。
- 燐光という用語は、同じ発光現象を表すために使用されますが、電磁放射線が停止すると、光はゆっくりと消えます (いわゆる余光)。
- NDT はさらに一部のりん化合物の「記憶効果」を使用して、レーザー刺激の力を借りて目に見える画像に現像するために、X 線撮影の潜伏画像を保存します。 比較的粗いリン酸塩結晶を使用しているので、画質は特に優れているわけではありません。 より小さな結晶で記憶りん光体を作る可能性が研究されています。
蛍光増感紙は薄くて柔軟なベースで構成され、放射線にさらされると発光する適切な金属塩 (タングステン酸カルシウムなどの希土類) のマイクロ結晶でできた蛍光層によってコーティングされています。 放射線により増感紙が光を放ちます。 光の強度は、放射線の強度と直接比例します。 こうした増感紙では、非常高い増感係数 50 を達成することができ、露光時間を大幅に削減できます。 ただし、画像の鮮明さが落ちるので低画質です。 蛍光増感紙は、大きな欠陥の検出との組み合わせで、露光時間を大きく削減することが求められる場合のみ、産業用 X 線撮影で使用されます。
蛍光増感紙と鉛増感紙の他に、両方のメリットを少しずつ併せ持つ金属増感紙があります。 この増感紙は、フィルムベースと蛍光層の間に鉛箔がはさまっています。 このタイプの増感紙は、Structurix F6 または F8 のいわゆる RCF フィルム (高速サイクルフィルム) と組み合わせて使用することを意図しています。
達成できる増感レベルは、増感紙が発する光に対する X 線フィルムのスペクトル感度に大きく左右されます。
金属蛍光増感紙で満足のいく X 線写真を撮るには、適切な F フィルムタイプと組み合わせて使用する必要があります。
正しく使用し、好ましい条件下にある場合は、鉛増感紙と組み合わせた D7 フィルムと比べて、露光時間を係数 5 から 10 で削減できます。 適用されるエネルギーレベル (放射線硬度) と環境温度も蛍光の程度に影響するので、これは一定の係数ではありません。 たとえば、200 kV で係数 10 を達成できますが、Iridium192 (公称値 450 kV) だと D7 フィルムと比べて係数 5 にしかなりません。 表 1-6 は、RCF テクニックの相対暴露係数を示しています。